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The structure of shock waves for small Reynolds numbers Is examined on the 
basis of Navler-Stokes equations. Appropriate functions are sought in the 
form of an expansion with respect to a small parameter which is proportional 
to curvature; some results are presented for zero-th and first terms of this 
expansion. 

In connection with examination of supersonic flow around bodies at moder- 
ate Reynolds numbers the necessity arises to improve the accuracy of the 
pattern of lnviscid flow according to which, In particular, the shock wave 
Is considered as the surface of dlscontlnulty. This question was first raised 
In the work [ 11, subsequently various authors referred to this problem In 
;z;;fled form [ 2 to 41; a successive study of this question Is contained 

. The method developed in [5] consists of constructing “internal” 
asymptotic expansions with respect to a small parameter which tends to zero 
together with vlsqoslty, The terms of the asymptotic expansions correspond 
to discontinuous external” flow and to the “Internal” structure of the 
shock. However, a different approach which Is examined in the present note 
Is possible (*). 

Let us assume that the flow In the entire Infinite region Is described by 
Navler-Stokes eql:atlons In which a characteristic measure of viscosity, for 
lhstance the viscosity at Infinity, plays the part of a fixed parameter. 
The problem consists of determination of the structure of a curvilinear shock 
wave under the condition that behind itvlscous tensions and thermal fluxes 
exist. In other words, It Is required to find a solution of Navier-Stokes 
equations such that at Infinity It tends to approach the values of parameters 
in undisturbed flow and such It satisfies the required number of boundary 
conditions on a sufflclently smooth r curve (for Instance, values of velo- 
city derivatives and temperature derivatives on 
solution). 

r may be given for the 

In the one-dimensional case (rectilinear shock) it is possible to inte- 
grate the s stem of Navler-Stokes equations directly and to solve the given 
problem (** “I . In connection with this it Is natural to look for a solution 
of the general problem In the form of an expansion with respect to a small 

*) It can be demonstrated that the results obtained below may be utilized 
In the solution of the problem of viscous fluid flow over a boay. 

**) F or this one-dimensional system the specific solution, which at Infinity 
on both sides of the shock approaches definite values, Is known as the 
solution of Becker [6]. 
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parameter which fs ~~o~o~~~on~~ to the curvature (or inversely proportional 
t5 the radius of c~~~t~~~~.~*~ The a;ero-th or&*r tex‘m of this expansian 
here will turn out ta be the structure of a Fectilinear shock b&And which 
velocity and temperature gmdients exist. It is Important to nate that in 
connection with the absence of singularity (“edge &‘feCt”) When this para- 
meter tends to zero, the necessity disappears for the construction of two 
asymptotic expansions, an ‘internal.‘” and “external”, which are indlspensl- 
ble In the case %:hen viscosity Is allowed to approaoh zero [5]. 

For simplicity lim.lting ourselves to the t~~-~~~~~a~~~~~ case, we intro- 
duce curvilinear orthogonal coordinates (n- and 9) cunneeteci with the curve 
r is Is t;aken along I? f n is directed towards the concave side of the 
curvature of f 1, which eharacterizas the "form'* of the shock in the sense 
that the normal n , in dlstlnction from the tangent 8 , ~111 be the direc- 
tion of rapid change of the appropriate functions. Denoting by & the 
characterilstlc value of the radius of curvature of r” , we lntroduae a char- 
acteristic measure of le th 6 in the direction of the normal. The dimen- 
sionless parameter E = E, A 7 is generated. h~~~~~ that no = n/a, e0 =g/& , 
and hav%ng written the complete system of Havier-Stokes equatrons in t&e 
coordinates fn= < s” f , we w3.U be 2oofctrq for a solution in the farm 

f s f(o) _j_ ,p +. E2f(3) + 

where f is any of the desired functions. 

In the zero-th approximation a system of the 

Hers u, U, p, p, n and n are velocity component3 along 8 8nEuTd n , 
pressum, density, enthalpy and coefficient of viscosity resy2ctively; 0 
and R are the Prandtl nursber and adiabatic exponent 
tions for these equatiws have the form (*) 

TM bwmdary condi- 

gives an ef%ctfoe t?~Lckness of the shock wave bg I 8% n -= 0 indepttndent 
of ~~da~~ conditfms. Aa ax3 ilfustrat%on of this,. %ypical profiles of the 

*) Here and in what follows it 2s assumed that the radius of curvature 
appears as the ehax+acteristic scale of length Ear the variation of func- 
tion afong the shock. 

**) fn the following the solution will. be sought with accuracy ta deriua- 
ttves of functiona without sacrifice in generality. 
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;,“;ll velocity component lJ = $0) /Jh, are shown in Fig. 1, in dimensionless 
. These profiles were obtained at Prandtl.number o = 2 for various 

values of derivatives dftot ( d$, and dhf*l / dk 
at the point where d$J / & = O.\*) Trans- 

J~---l--l~ 

ferring to the physical veriable n , it can 
be shown that 

6 PO 1 
R,- ~cx,vooRo = - iv,, 

where p0 is the vd.scosfty at stagnation 
temperature. Taking some liberty with the 
selection of characteristic scale factors we 
Set c = l/NRe . Now hpression (1) will 
have the form of an asym totlc expansionwith 
respect to param;Lerfac; N 

GEwever, (1) I 
which tends to 

approach zero. 
different In principle tram the corresp:n- 
ding expansion for disappearing viscosity. 

For subsequent approximations, systems of 
ordinary linear equations are obtained. The 
constants of Integration of these equations 

-5 0 & are completely determined from boundary 
values. 

Fig. 1 Corrections to the classical shock struc- 
ture (i.e. Becker’s solution) and consequent- 

ly to the common shock wave relationships arise from terms in expansion (l), 
(a) due to the presence of gradients of desired functions (i.e. due to the 
presence of viscous tensions and thermal currents) Immediately behind the 
shock wave, and (b) as a result of distortion of the shock wave; corrections 
of the second kind appear only In the first and subsequent approximations 
f’k’ (k >, 1). 

In the general case numerical calculations are required for determination 
of the function $k); however, if the corresponding gradients do not have 
orders higher than f& (y_ is the value of y at infinity) then it is 
possible to obtain eoeff%cients with E in the farm of quadratures by means 
of Becker’s solution. 

Final results are considerably simplified if one takes advantage of the 
hypersonic approximation pointed out In [71. 
infinity to be equal to zero (In the sum f(O) 

and assumes the temperature at 

the order E&,~, where 
+ sf(*) here terms which are of 

H, is the Mach number of the unperturbed flow, are 
not taken into account). 

The angle between the velocity vector at infinity and the direction of 
the normal is designated by 6 , I_1 (8) is the radlus of curvature of the 
natural shock front [7]. 

Let us assume that 

R, = R (01, ArRe = ~‘o i ~~~~ (0) R, 

Then for values of u = 2 and u _ h , we obtain for the first terms Of 
the expaneion of nondimensional velocity components U and Y , of enthalw 
x and of density p 

u= “. v= v h 
w,smt) ’ WC0 cos 6 ’ 

ii=7, 
Woo 

(wm~ = II,” + v,l) 

the following relationships: 

*) With respect to the order of magnitude these derivatives correspond to 
conditions of hypersonic flow over blunt bodies at small Reynolds num- 
hers. Asymptotes l’, 2’ and 3’ belonging to families of profiles 1, 2 
and 3 correspond to values of V,= 3; 7 and 10. 
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f cos 6 (1 - 
dU(‘) 

‘0”) &,o 
- _ (J(l) = 

IF (00) - VII (ql- l-1 (1 - vo) 
vo 

Here 

- TV0 + (J” - 1) ln (u. - T) - v, 

@I = H(l) + voJAl) 

F 0) = 'In P + (y + $1 t + r (7 + 1) In (t - ~1 

J+f (d = '/a r (i - 7)-l (1 - P) + '/* y (1 - t3) + v3 (1 - t) - 

- (1 - T3) (1 - 3r) In (t - r) + tm1r2 (P - 1) In (1 - r) + t-1 v1 - vI 

N (t, 6) = cm 6 [I/# - q.t + (7% - 1) In (t - r) L- va] + 

+ sin 6 P/d + (r + W1 (t - y) In (t - r) + t-Iv, - vJ 

r=(rc-- u 1 (x + 11, v = '/s (1 + Td, % = '13 + T + y(y -I- 1) In (2 - r) 

v$ = Vz - r + (P - 1) In (1 - 7) 

v3 = ‘/s i- 2~ -I- T h -I- WI (W + 67 - 5) + T (r + 1) In (1 - r) 

v1 =vl - (1 - T’) (1 - 3T) ln (1 - T), v5 = vl + 1/2 + (1 - y2) In (1 - r) 

vo is a function which is determined by the relationship 

VI - F (uo) = no 
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