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The structure of shock waves for small Reynolds numbers is examined on the
basls of Navier-Stokes equations. Appropriate functions are sought in the
form of an expansion with respect to & small parameter which 1s proportional
to curvature; some results are presented for zero=-th and first terms of this
expansion,

In connection with examination of supersonic flow around bodies at moder-
ate Reynolds numbers the necesslty arises to improve the accuracy of the
pattern of inviscid flow according to which, in particular, the shock wave
1s considered as the surface of discontinuity. This question was first ralsed
in the work [1], subsequently various authors referred to this problem in
simplified form [2 to 4]; a successive study of this question is contained
in [5]). The method developed in [5] consists of constructing "internal"
asymptotic expansions wilth respect to a small parameter which tends to zero
together with viscosity. The terms of the asymptotic expansions correspond
to discontinuous "external" flow and to the "internal" structure ot the
shock. However, a different approach which is examined in the present note
is possible (*).

Let us assume that the flow in the entire infinite region is described by
Navier-Stokes equations in which a characteristic measure of viscoslty, for
instance the viscosity at infinity, plays the part cf a fixed parameter.

The problem conslsts of determination of the structure of a curvilinear shock
wave under the condltion that behlind it viscous tensions and thermal fluxes
exist. In other words, it is required to find a solution of Navier-Stokes
equations such that at infinity 1t tends to approach the values of parameters
in undisturbed flow and such 1t satisfies the required number of boundary
conditions on & sufficlently smooth T curve (for instance, values of velo-
city derivatives and temperuture derivatives on T may be given for the
solution).

In the one-dimensional case (rectilinear shock) it is possible to inte-
grate the system of Navlier-Stokes equations directly and to solve the given
problem (**¥ In connection with this it is natural to look for a solution
of the general problem in the form of an expansion with respect to a small

*) It can be demonstrated that the results obtained below may be utillized
in the solution of the problem of viscous fluid flow over a boay.

**) For this one-dimensional system the specific solution, which at infinity
on both sides of the shock approaches definite values, 1s known as the
solution of Becker [6].
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parameter which is proportional to the curvature {or inversely proporiional
to the radius of curvature}.{*} The zero-th order term of this expansion
here will turn out to be the structure of a rectilinear shock behind which
veloclty and temperature gradients exist. It is important to note that in
connection with the absence of singularity {"edge effect") when this para-
meter tends to zero, the necessity disappears for the construction of two
asymptotic expansions, an "internal” and "external”, which are indlspensi-
ble in the case when viscosity is allowed to approach zero [5].

For simplicity limiting ourselves to the swo-dimensional case, we intro-
duge curvilinear orthogonal coordinates {n and g) connected with the curve
T {8 1s taken along T , n 4is directed towards the concave slde of the
curvature of T }, which characterizes the "form" of the shock in the sense
that the normal g5 , in distinction from the tangent & , will be the direc-
tion of rapid change of the appropriate functions. Denoting by &, the
characteristic value of the radius of curvature of ' , we introduce a char-
acteristic measure of length 8 in the direction of the normel. The dimen-
sionless parameter ¢ = 8/F, 1s generated. Assuming that n°= n/8, s°=s/R,,
and having written the cemp%ete system of Navier-Stokes eguations in the
coordinates {n®; s°), we will be looking for a solution in the form

f= 19 4 gflt) - e2fd 4 n
where ¢ 1s any of the desired functions.
In the zero-th approximation a system of the followlng form is obtalned
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Here wu, v, p, p, h 8nd p  are velocity components along o and n ,
pressure, density, enthalpy and coefficlent of viscoslty respectively; ¢
and » &re the Prandtl number end adlabatic exponent  The boundary condi-
tions for these eguations have the form {¥%)

Wsu o @y, PO np, B SRy for n——o0 -
dul® do(® dnt®
G =0 G =l g =09 for n=0

From results of numerical integrations of systems {2} and {3} the magni-
tude of parameter ¢ c¢8n be established. The selublon of thls system which
is determined by one dimensionless variable

glves an effective thickness of the shock wave a2 , 8% n = 0 Independent
of boundary conditions. As an illustration of this, typlcal profiles of the

#*} Here and in what follows 1t is assumed that the radius of curvature
appears as the characteristic scale of length for the varlation of func=-
tion along the shock.

##) In the following the solution will be sought with accuracy to deriva-
tives of functions without sacrifice in generality.
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normal velocity component ¥ = v“”/Vhw are shown in Fig. 1, in dimensionless
form. These profiles were obtained at Prandtl-number ¢ = 2 for various
values of derivatives dyw){dg and dh'® / dt
at the point where g,\0 /g4t = 0.(*) Trans-
ferring to the physical veriable » , it can
g’ 107 be shown that

[ 1
J L Ko _
Z’\\ Ry Poslooflo Nge

where y, 1s the viscosily at stagnation
‘\\\\\ temperature, Taking some liberty with the
2

selection of characteristic scale factors we

5 set ¢ = 1/Npe . Now Expression (1) will

Vil have the form of an asymptotic expansion with

=~ respect to parameter 1/¥p. which tends to

7 \\\ approach zero. In fact, however, {1) is
different in principle from the correspon-

N ding expansion for disappearing viscosity.

E;%F/ For subsequent approximations, systems of

ordinary linear equations are obtained. The
constants of integration of these equaticns
] g & are completely determined fram boundary
values.

Corrections to the classical shock struc~-
ture (i.e. Becker's solution) and consequent-
ly to the common shock wave relationships arise from terms in expansion (1),

a) due to the presence of gradlients of desired functions (i.e. due to the
presence of viscous tensions and thermal currents) immediately behind the
shock wave, and (b) as a result of distortion of the shock wave; correctlons
of the second kind appear only in the first and subsequent approximations
A (k> 1).

In the general case numerical calculations are required for determination
of the function #X; however, if the corresponding gradlents do not have
orders higher than f,/R, (7= 18 the value of 7y at infinity)} then it is
possible to obtain coefficients with ¢ in the form of quadratures by means
of Becker's solution.

Final results are considerably simplified if one takes advantage of the
hypersonic approximation pointed out in [71, and assumes the temperature at
infinity to be_equal to zero (in the sum f© 4 g/’ here terms which are of
the order eﬂ;z, where KN, 1s the Mach number of the unperturbed flow, are
not taken into account).

The angle between the velocity vector at infinity and the direction of
the normal 1s designated by ¥ , R (8) 1s the radius of curvature of the
natural shock front [T7].

Let us assume that
Ro =R (O): ArRe = Ko ‘; PooVeo (0) RO

Then for values of ¢ =2 and u ~ h , we obtain for the first terms of
the expansion of nondimensional velocity components ¥ and V , of enthalpy
¥ and of density Pp

wn

Fig. 1
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the following relationships:

#) With respect to the order of magnitude these derivatives correspond to
conditions of hypersonic flow over blunt bodies at small Reynolds num-
bers. Asymptotes 1’, 2° and 3’ belonging to families of profiles 1, 2
and 3 correspond to values of V.= 3, 7 and 10.
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Here
e(l) — H(l) + voV(l)
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v, 1s a functlion which is determined by the relatlonship

vy — F (v) = n°
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